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ABSTRACT

The finite and infinite horizon time probability of ruin are important

parameters in the study of actuarial risk theory. This paper introduces

procedures for directly estimating these key parameters from a random sample

of observations without assumptions as to the parametric form of the

distribution from which the observations arise. The estimators introduced

apply to most of the classical models in which ruin probabilities are used and

also apply to a much broader class of models. The procedures are based on the

concept of sample reuse, an old idea in statistics which is becoming more

popular due to the widespread availability of high speed computers. In this

paper, the almost sure consistency of the estimators is established. Further,

finite sample properties of the estimators are investigated in a simulation

study.
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SIGNIFICANCE AND EXPLANATION

The probability of ruin is the probability that claims against a risk-

taking enterprise exceed its initial capital or reserve plus income at some

point of time. If ruin occurs before a fixed time, such as one or ten years,

this is called the finite horizon time problem and otherwise, the infinite

horizon time problem. Even in the simplest models, ruin probabilities can be

difficult to compute. There is a vast literature on this aspect of the

problem dating back at least to the early 1900's. j

In this paper it is shown how to approximate the probability of ruin

directly from available claims data. Various properties of the approximation

procedure are provided. Despite the long history of research in this area,

it is not surprizing that these procedures have not been developed previously

because they are computer intensive and would have been computationally

burdensome ten years ago. However, in today's era of fast computation, these

procedures are inexpensive to implement. An example of the procedure is

provided via simulating claims data and calculating approximations to the

probability of ruin of the enterprise.
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NONPARAMETRIC ESTIMATION OF THE PROBABILITY OF RUIN

Edward W. Frees

§i. INTRODUCTION

Let (Xi,Yi ) i 1,2,... be i.i.d. random vectors with joint bivariate distribution

function F. Use the random variable X i to represent the i
th 

claim amount and the

nonnegative random variable Yi to represent the ith interarrival time between claims.

For t > 0, define the number of claims by time t as

N(t) - ) I(y 1 + "• + Yk t)
k1

where I() is the indicator function. Premiums are assumed to arrive at a known steady

rate, say, P per unit time. Thus, the amount that claims exceed premiums by time t is

N(t)
9! U(t) = Xk - t (1.1)

k-1

N(t)
Here we interpret the sum to be zero when N(t) - 0. We are primarily interested in

k-i
the probability that U(t) exceeds an initial reserve u at some time t prior to or

at T, the horizon time. This probability can also be defined by

*(u,T) - P( sup U(t) > u) • (1.2)

04teT

We are also interested in the probability that U(t) eventually exceeds an initial

reserve u,

*(u) = (u,®) = lim *(u,T) (1.3)

These probabilities, f(u,T) and f(u), are called, respectively, the finite and infinite

horizon time probability of ruin.

The probability of ruin is a key parameter in the collective theory of risk and has

received considerable attention over the years. For several different types of

0!
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introduction to this theory, see Feller (1971), Beard et. al. (1984), Gerber (1979) and

Bihlmann (1970). The behavior of the fUnite horizon time probability of ruin has been

widely investigated not only because of its practical relevance but also because explicit

corputation of U(u,T) is difficult except in the most trivial cases. ExplicLt

calculations have been given for some specific forms of F, cf., Seal (1978) and Thorin

and Wikstad (1976). However, use of these explicit solutions has been limited due to their

complexity and their dependence on a specific form of F. Because of these difficulties,

papers giving approximations of *(u,T) suggested by limit theorems (e.g., as

U + ., T + -) are abundant in the literature. The most successful of these

approximations seem to be the diffusion approximations given by Siegmund (1979) and applied

by Asmussen (1984). See Lalley (1984) for a refinement of Siegmund's work. Another class

of methods for calculating J(u,T) is the Monte-Carlo method. Surprizingly, the Monte-

Carlo method has received only limited attention in the risk theory literature. For some

accounts, see Beard et. al. (1984) and Seal (1978). Note that this method does not depend

on a specific form of F but does depend on complete knowledge of F.

The approximations of f(u,T) and *(u) given in this paper are different in nature

from those sketched above and are inspired by the concept of sample reuse. Sample reuse is

an old idea in statistics, popularized in the nineteen-forties by Hoeffding (1948) and more

recently by Efron (cf., 1982). The idea for our applications is as follows. Consider the

random variable, Z = suPUtT 0(t). Since the distribution of U(t) is completely

determined by F, then the distribution of Z is completely determined by F. Note that

from (1.2), W(u,T) = I - P(Z 4 u). By the usual multivariate Glivenko-Cantelli Theorem,

knowledge of (Xi,Yi) i = 1,2,... completely determines F and thus, for a sufficiently

large sample size n, from {(XiY )}n
- l i=s we can build a good approximation to F, the

usual (multivariate) empirical distribution function. This raises the natural question of

how to build a reasonable estimator of (u,T) based on a random sample of size n,

((X.Y.)In= . The purposes of this paper are to argue that this is an important question

and to develop estimators of p(u,T) (and *(u)) that possess desirable properties.

-2-
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Ir §2, estimators of f(u,T) and *(u) are introduced. The almost sure (a.s.) -I

runsistency of these estimators is proved in §3. A small simulation study is given in

§4. Because of the nature of the approximations, the assumptions made in our development

are different and more general than the usual risk theory assumptions. In §5 we discuss

these differences and make other concluding remarks.
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§2. ESTIMATORS

Let {(Xi,Y i)}, I be a random sample from a population with distribution function

F. Let fala2j,...,anjl = A3  be the jth permutation of (1,2,...,n}, = 1,...,nt We

intend to reuse the sample by considering reordered pairs {(X 'Ya )}

Define Sn Y1 + "'" + Yn" For the jth permutation, the number of claims by time

t is

n

NA (t) ( I(Yal + + Yka t t ( Sn
k=1 k

In t >Sn

and the amount that claims exceeds premiums by time t is

NA (t)

UAj t) X k-i )ak

For the 3th permutation, we have ruin if

l(sup UNL(t) > u) t 12.1)

where the supremum is over the set {t : 0 r t < min(S n,T). Note that to compute the

function in (2.1) one does not need to evaluate UA (t) at all t e [O,min(SnTf] but

only at the random time points 0, Yalj,Yalj + Ya 2 '...'Yal + ... + Yah . The first type

of estimator we consider is the average over all permutations,

n(u,T) = (nl) Ilsup UA (t) > u) (2.2)
n pJ

and

*n(u) = 4n(U,S ) (2.3)

where p is the sum over all permutations of 11,2,...,n). Note that we could

alternatively define

*nCu) = 40n(u,) = lim (u,T)
T.S

The consistency of these estimators is provided in the following

-4-
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Theorem 2.1.

Suppose that EY > 0. Then, for each T,

lim n' (U,T) 4'(u,T) a.s. (2.4)
n4

and

urn C u) 4|(u) a.s. (2.5)

By the SLLN, the requirement EY > 0 ensures that Sn a.s. The proof, given in

J3, is based on the idea that 4'can be shown to be a reverse martingale plus negligible
n

terms. we remark that the estimators 4' defined in (2.2) and (2.3) each require the

and

evaluation ot nI indicators of ruin, an extensive amount of computations even for

moderate sample sizes (say, n > 10). Because of this computational difficulty, we now -

introduce a bootstrap estimator of the probability of ruin. The bootstrap methodology, a

name coined by and a methodology popularized by Efron (cf., 1982), is also computer-

intensive but does not require a prohibitive amount of computation.

Let B - B(n) be a positive integer depending on n such that B + as n + .
n

Based on the observed sample {(Xi , n) we draw B bootstrap realizations of in

the following two steps. For b -,...,B,

Step 1. Make n independent (conditional on {(XiYi)1) draws with replacement

from {(X ,Y) 1  to get (X y ) for i =,...,n.

Step 2. Define
n

Nbt [ I(Y b + + Y*b t)
k 1 k

and compute

I.N b t) ..

4 Cu T)= I( sup ( W b Pt) >u)
0(t(min(S ,T) k=1

The bootstrap estimates are defined by

B4"(u,T) =- B1  * '
*n(uT B *n (u,T) (2.6) __

-5-
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and

The conis~tency of these estimators is provided in the following

-Thporemn 2.2.

;up.pose FY > 0 and

log n O( f( 1 / 2 ) (2.8)

* Then, tor each T,

lim IP*(u,T) = S(u,T) a.s. (2.9)
n

urm n*((u) = fl'u) a.s. (2.10)

The proof of Theorem 2.2 is given in §3. The condition on B in (2.8) guarantees that

B grows sufficiently quickly to achieve a.s. convergence. In §4 we investigate the finite

*sample properties of A~ is a small simulation study.
n

-6-
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Define Yln'y2n, ,..., lyn to be the order statistics of YlY 2,.. .Yn and let Xirn be

the claims amount associated with 'tint i = 1 ....,n. Let Gn = 0((Xinlyin)L

1.,(xi,Y1 ), i > n) for n > 1, a nonincreasing sequence of sub a3-fields.

Because all the arguments follow easily for the case T = ,we only give proofs for the

a.s. consistency of = (u,T). We now define a version of *n and show that it is a

reverse martingale. Later we show that this version is close to in the appropriate
n

sense.

For the 3th permutation of il,2,.ni, let

NA'(t) =NAIt + ( t)

be a version of the number of claims by time t, j = 1..,nl With akj k for

k > n, define

NA' Ct)

J'(,T = nf
1  ~ su ~ x - Pt > U) .(3.1)

n P t(pT k-1 kj

We have the following property for this version of the probability of ruin.

Lemma 3.1

For each u,T, (P(u,T),G )is a reverse martingale.
n1 n

i'rocf:

It is easy to see that n = ~'(u,T) is Gn-measurable and Gn-integrable. With

[~r) defined as in (1.1), we have the relation

=EJI( sup U~t) > u)IG n} (3.2)

E(4n-IGn., I EJE(I( sup Ut) > u)IGn)j~n.,iI

E Eil( sup U(t) > u)IGn+ll = .+

-7-
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Proof of Theorem 2.1:

From (3.2), we have that Eq'(u,T) = y'(u,T). From Lemna 3.1 and the (reverse)

martingale convergence theorem, it is easy to show that

lim '(u,T) = (u,T) a.s. (3.3)
n

Define the stopping time

n
T = inf{n k 1 : 1 (Xk - PYk

) > 
u.

k=1

Now, it is easy to see that *n (u,T) and *p(u,T) differ only on the set {n < i < }.

Thus

0 4 * (u,T) - i (u,T) = I(n < T < o) + 0 a.s.
n n

This and (3.3) are sufficient for the proof. +

Proof of Theorem 2.2:

Denote P 
= 

4*(u,T). From (2.4), a sufficient condition for (2.9) is, for C > 0,
fl n

n ( - @nI > C) <

We show

P(*- *n > 
)  

'

the proof of the other inequality being similar.

Define Fn 0((Xi,Yi), i = 1,...,n) for n > 1, a nondecreasing sequence of sub

0-fields. Now, from the condition (2.8), there exists a positive constant K such that,

for sufficiently large n,

n- ) exp(-KB
I/2

) . (3.5)

From the Markov inequality, with 5 > C
-
1
, 

we have

P( - > C) exp{-E6KBI/2}Efexp(6KB
1
/
2
(n -n

n n n *n)
1/2

From (3.5), exp{-E6K8 } is summable. Thus, to prove (3.4), we need only show

sup Etexp(sB/(i -/2))} < (3.6)
( n 'n))n

: . - :~. . , . + . -.. . , : -
.-.. . • . +o . ,.- . . . . . . - .- . . . + . .+ ... . . + . - , . ", • + . - °
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Ai

where s = 6K. From (2.6), since conditionally on Fn, qn is the mean of a binomial 1
random variable, we have

E(exp(sB1/
2
(1n - ,n))}

SE((I - /n)exp(-SnB 1/2} + Pn exps(1- wn)B
- / 2  

B

E(1 + s (1 - n)/(2B) + O(B-3/2))B

(1 + S
2
/(BB) + O(B 3/2 ))B

by a Taylor-series expansion. This is sufficient for (3.6) and hence (2.9). #

9
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§4. SIMULATION

In this section, finite sample properties of the bootstrap estimators introduced in §2

were investigated. A simple example was used so that calculation -f exact probabilities of

ruin an. comaion with other studies were possible. Clai amounts were assumed to be

e×ponentially distributed with mean 1. The claims were assumed to arrive as a Poisson

process with intensity p = .8, i.e., interarrival times are independent and exponentially

distributed with mean 1.25. The claims amount and arrival times were assumed to be

independent and premiums arrive with unit intensity (P = 1). Under these assumptions, it

can be shown that

c(u) =  
.8 exp f-.2u} , 

(4.1)

thus giving an easy expression for exact values of (u). Furthermore, in a recent study,

Asmussen (1984) has provided exact values of l(u,T) and several popular approximations of

(u,T) for various values of T.

The bias (BIAS) and root mean square error (RMSE) were used to judge the performance

of the estimators. All computations were done on a VAX 11/750 owned and operated by the

Department of Statistics at the University of Wisconsin-Madison. The IMSL Fortran

subroutines produced the random deviates.

In Table 1 we give the results of the performance of the bootstrap estimator of the

* infinite horizon time probability of ruin. The tables give the criteria for ruin

probabilities p(u) = 1%, 5%, 10%, 40% and for sample sizes n = 10, 30, 50, 100, 150.

The ruin probabilities were chosen to represent a range which is typically of interest to

the actuarial community. The sample sizes were selected to represent small and moderate

numbers of claims. For small sample sizes n 
= 

10, 30, 50, B = 200 bootstrap

replications were run to compute the estimators for each simulation trial. For larger

.sample sizes n = 100, 150, we used B = 100 bootstrap replications to compute the

estimators. Using a smaller B produced considerable savings in computer run time and did

not seem to affect significantly the accuracy of the results.

In Table 2 we give the results of the performance of the bootstrap estimator of the

tinite horizon time probability of ruin. The number of bootstrap replications are as in

-10-

*%

. ...



.'e.

A A --. A AM. - . -

,,,arable to the 
study of AsmUssen 

(198
4
), the level of

rTable I- TO Ma)e or stud ) and horizOn times T - 13.8. 41.3, 68.8, 96.4 were
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m e s T * t h e e x a c t p r o b a b i l l t e

SQIected. Vol this level of reselve and tese ti wtheo e aa ple sizes.

(1984) 
becaUse 
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n 30, 50, 100, 150, 200.

TABLE~ 
1 T O~STRAp FS fI OF

F IAS 
SE

.00982 
'0 9

10 200 
.01'770

. 302-.007731

30 -.00364 .02116

0 .00470 .03910

150 I01365 .0561

0 200 
-.04718 

.04861

0 
.06.06063

0 
..-. 

.07711

m 
50

Z00 

100U06 
.10527

10 

.02400 
.11267

".• .200 

.094

-0 
-. 09023 .09648

30 
-.01650 

.10

50 
.00960 .14964

1100 
4489

IS0

-0%10200 
-.24840 .32200

30 l.082.2692240% 30-0 8 5.2 297

50 -.04225

0100 
-.04010 

.22975

100 -.0225D .21270
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TABLE 2 -bjoOTbTRAP E~STIMATOR OF tJ(u,i)

T Y(uT) nB SIAS RMSE

13.8 .00007 30 200 .00118 .00546

50 .00138 .00459

100 100 .00043 .00346

150 .0004e .00272

200 .00023 .00173

41.3 .00145 30 200 .00005 .00581

50 .00330 .01590

100 100 .00805 .02699

150 .00670 .02276

200 .00370 .01144

68.8 .00338 30 200 -.00188 .00611

50 .00140 .01566

100 100 .00892 .03525

150 .01387 .04527

200 .01017 .03118

96.4 .00491 30 200 -.00341 .00674

50 .00013 .01560

100 100 D00739 .03489

150 .01509 .05172 j
200 .01579 .04764

As was expected, the performance of the infinite time estimator was better the closer

flu) was to 50%. In Table 1, the asymptotic theory comes quickly into play when

*() 40% as evidenced by the decreasing BIAS and RI.SE terms with increasing sample

size. For t (u) Iu1%, we see some levelling off of the RcMSE term from n 100 to

n 150. The smaller probabi1lities showed no evidence of levelling off for the sample

sizes considered. Although the motivation of decreasing B at higher sample sizes was to

-12-



decrease computing costs, this did not seem to affect the performance of the estimators.

See Efron (1982) for further discussion of the selection of B.

Perhaps the most interesting fact of the simulation study was that the performance of

the finite time estimators improves as T decreases. In Table 2, the asymptotic theory

comes quickly into play when T - 13.8. For T - 41.3, we see the decreasing trend in the

BIAS and RMSE terms beginning at a larger sample size n 1 100. The intuition is as

follows. For T - 13.8, on the average it requires about 11 observations to check for

ruin by time 13.8 (since 11 x 1.25 x 1 - 13.75). With a sample size of n = 100, we have

approximately 9 independent and identical realizations of an indicator of ruin by time

T - 13.8. Repeating this reasoning for T - 41.3, the reader can verify that we have only

approximately 3 independent and identical realizations of this indicator of ruin. While

the goal of the estimators introduced in §2 is to reuse sampling information, by increasing

the horizon time T we increase the number of observations necessary to check for ruin and

thus reduce the number available for resampling.

§5. DISCUSSION

The estimators introduced in §2 are defined in terms of the classical method of

collecting data, i.e., based on a random sample of size n. However, it is easy to modify

these estimators for other methods of data collection and retain their important

statistical properties. For example, suppose an insurance company would like to estimate

the probability of ruin based on one year of observed data. Then the sample size itself is

random. However, it is easy to see that the usual results on random change of time (cf.,

CsbrgB and Rgv6sz, 1980, Theorem 7.1.1) can be applied to preserve the properties stated in

Theorems 2.1 and 2.2. In the risk and queuing literature, this change of time is usually

refered to as a transition to operational time.

The most important drawback of the estimators ln and A is that they rely heavily

on the independence of the bivariate pairs (Xi,Yi). While this assumption is used in most

models constructed to calculate the probability of ruin, other models such as a model which

-13-
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uses the nixed Puisson process for the claims number process (cf., ,eal and Gerber, 1984)

Ao not .

Ex,.ept for the importa c assumption of independence, the estimators 4F n and )p and

heLr iroperties ite relatively free from assumptions when compared to other estimators of

the probability of ruin. Both estimators are nonparametric in the sense that they do not

Assume a particular parametric form nor knowledge of the distribution function F. In the

assumptions we have not precluded the case PIYi = 0) > 0, thus allowing for the

possibility of multiple claims at any point in time. Further, we have not assumed

independence between the claim arrival time and the claim amount. if this assumption is

made, we conjecture that a different estimation procedure can be constructed that uses the

iata nore efficiently, in some sense. We leave this as an open question for future

research.

We remark here that questions of finding the optimal or most efficient procedure, in

some sense, have not been addressed. For example, in Step I of the definition of #0 in

*b *b
§2, if the drawing of ((X* )11= was made without replacement then inspection of the

proof of Theorem 2.2 shows that Theorem 2.2 still holds. Whether the drawing should be

made with or without replacement we leave as an area of future research. The bootstrap

estimator * is computationally similar to the usual Monte-Carlo procedure. However, it

is different philosophically in that the Monte-Carlo procedure assumes knowledge of the

underlying distribution function while the bootstrap does not. This similarity suggests

that dynamic factors in ruin probabilities such as interest, inflation, economic cycles,

etc., that have been incorporated in Monte-Carlo methods (cf., Beard et. al., 1984, Chapter

7) may he incorporated in bootstrap estimators. We leave this as an open area for future

research.

Acknowledgement. The author would like to thank Professors James C. Hickman and Robert B.

Miller for helptul comments on an earlier draft of this paper.
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